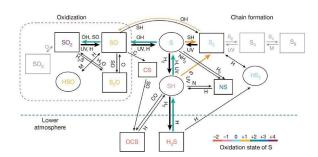
Example of a (small) C-H-O chemical network (292 reactions)

This is not meant to be read in detail, but simply to give you a sense of the size of a chemical network.


The production and loss terms are constructed from these rate coefficients.

Each reaction has a forward and reverse component. Typically, only one component is measured experimentally and one then uses theory to "reverse" the reaction.

43

Tsai et al. (2017, ApJS, 228, 20)

Recent example: SO₂ production in WASP-39b (JWST data)

Some reactions involve photons! (Photochemistry)

44

Tsai et al. (2023, Nature, 617, 7961)

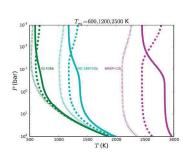
Why equations of chemical kinetics are "stiff"

Consider a simple system with simplistic production and loss rates (and cast in dimensionless units):

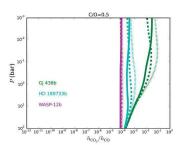
$$\begin{split} \frac{\partial n_{\mathbf{X}_1}}{\partial t} &= \mathcal{A}_1 n_{\mathbf{X}_1} + \mathcal{A}_2 n_{\mathbf{Z}_1} - n_{\mathbf{X}_1}, \\ \frac{\partial n_{\mathbf{Z}_1}}{\partial t} &= -\mathcal{A}_1 n_{\mathbf{X}_1} - \mathcal{A}_2 n_{\mathbf{Z}_1} - n_{\mathbf{Z}_1}. \end{split}$$

Problem 6.5.2 shows you how to solve this system of coupled equations:

$$\begin{split} n_{\rm X_1} &= 2 \mathcal{A}_3 e^{-t} - \mathcal{A}_4 e^{-(\mathcal{A}_1 + 1)t}, \\ n_{\rm Z_1} &= \mathcal{A}_4 e^{-(\mathcal{A}_1 + 1)t} - \mathcal{A}_3 e^{-t}, \end{split}$$


There are two chemical timescales in the problem: $t_{\rm chem}=1,\,(1+A_1)^{-1}$

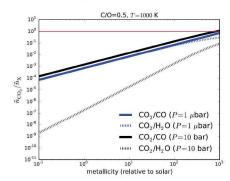
If $A_1\gg 1$, then one of the chemical timescales is much shorter than the other. The shorter chemical timescale controls the numerical integration across time. Such a set of equations is said to be "stiff".


In realistic chemical networks, there are hundreds to thousands of chemical timescales that vary over many, many orders of magnitude.

45

Can the abundance of CO₂ ever be greater than that of CO in a hydrogen-dominated atmosphere?

Consider three objects with a variety of plausible temperature-pressure profiles



Using the same equilibrium-chemistry models we discussed, the ratio of CO₂ to CO abundances is well below unity

46

Heng & Lyons (2016, ApJ, 817, 149)

Can the abundance of CO₂ ever be greater than that of CO in a hydrogen-dominated atmosphere?

The only way to make CO_2 more abundant than CO in a H_2 -dominated atmosphere is to greatly increase the C/H and O/H elemental abundances to implausible values.

Summary of Lecture 5

- Atmospheric chemistry teaches you how to be surprised, because it allows us to
 calculate the expected molecular abundances in chemical equilibrium given a set
 of temperatures, pressures and elemental abundances.
- The carbon-to-oxygen ratio (C/O) is a key parameter in controlling how carbon, oxygen and hydrogen are partitioned into molecules.
- Chemical equilibrium occurs when the chemical timescale is much shorter than all timescales associated with atmospheric dynamics (mixing).
- Systems in chemical equilibrium may be reduced to polynomial equations involving one
 of the chemical species.
- The quenching approximation is a simplified way of computing disequilibrium chemistry, but it does not always work.
- Chemical kinetics calculations typically employ chemical networks that involve hundreds, if not thousands, of chemical reactions.

Heng & Lyons (2016, ApJ, 817, 1

48