Ensure conservation of mass for each element (C, H, O):

ncH, +nco + 2ng,H, = Ne,
nH,0 + Nco = No,
dncu, + 2nu,0 + 2nc,H, + 2nH, = NH

One is simply counting the number of atoms that constitute each molecule!

After some algebraic manipulation (see Chapter 7.3 of textbook),
one ends up with a cubic equation involving methane:

Caidy, + Cofigy, + Cificu, +Co =0

Cy = 2K'K; (fio — e +1)., Rr= Ky oy Kigs
— K (4 — A Sk e
Cy = K' (4no — 4iic + 1) niy, N1,

— K} [4iiofic + 2 (1 - 2i0) (e — 1)],
€1 = 2K (i — fig) —Aic — 2o + 1,
Cy = — 2.

If you add carbon dioxide (COz), you end up with a quintic equation for methane

(Chapter 7.4 of textbook). 5

Well, how many molecules can you include and still
solve the problem as a single polynomial equation?
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ABSTRACT

We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary
atmospheres that include the carbon, oxygen, and nitrogen networks. Our hydrogen-dominated solutions involve
acetylene (C,H,), ammonia (NH3), carbon dioxide (CO,), carbon monoxide (CO), ethylene (C,Hy), hydrogen
cyanide (HCN), methane (CH,), molecular nitrogen (N,), and water (H,0). By considering only the gas phase, we
prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of 10
degrees). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs
free energy minimization and demonstrate that they are accurate at the ~ 1% level for temperatures from 500 to
3000 K. In hydrog the ratio of of HCN to CH, is nearly constant across a
wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our
validated formulae allow for the convenient benchmarking of chemical kinetics codes and provide an efficient way
of enforcing chemical ibrium in ic retrieval
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. After some mind-bending algebra, one ends up
l — O with a decic equation (polynomial equation of order 10)
involving carbon monoxide.

Ksdo.
I+ 2KKgito Ry
Keh + KK; 20 Fy
+ K3 Fy — 8K?KS
Ay=2Ksi + KK [270F2 + FI8Calo — 1)
o M} +4F,C(2Cait0 — D)) + KZ (Fy + 6FyCo)
% + 8K K Aoin (I — 8Cailo),
Be K(, Ay =2KsJ; + KK; 270 F; + F(8Cafip — 1)
- +4R0 (200 — 1) — 4R C3)
+2K3[fvr[1 = + K (F2 + 6F,.C2 + 12R,CT)
12605 —2K*K2in (1 — 32Carto + 961
[ As=2KsJs + KKq[20Fy + F(8Caito — 1)
+4F,C: 200 — 1) — 4R C3]
+ K2 (Fs+ 65,Ca + 12F,CF + 8K, C3)
— 16KKZinCa(1 — 12Cafio + 16C313).
Ao =2KsJy + KK [210F5 + F(8Cailo — 1)
+4RC Q0370 — 1) — 47CF)
+ K2 (F + 6K,C, + 12B.CF + 8RC3)
— 16KKZ NG5 (3 — 16Caito + 8C3713).
A =2KsJ; + KKo [l (8Cail — 1)
+ 4B, (2Cailo — 1) — 4RC3]
+KEFs + 2KE Q3K + 6F.Cy + 4R CF)
— 64K K2 C3 (1 — 2Cailo).

Fy=8Kdiic, + R BCiio = D]

D2 =KD Dsiico +

— 2kDaDide — X R= ZKriﬂ{—l + ZK[Zﬁ(

where the coefficients are Jy = Fj, Jy = 2RF, Jh = F
2RF, k= 2RF+ 2B, Jy= 2Rk + 2RF+ F, ks
2RF+ 2RF + 2RF,  Jk=2RF+BE+F, )

25F + 2R, &y =2RE + Fi, Jo=2EE, and Jig= F2. Ag=2KsJs + 4KKsCa [Fs2Caiig — 1) — FBCal
+2K2Cy(3F5 + 6F.Cs + 4K CF) — 32K KZanCi,

KsJy — 4KK, 7+ AKZCI 3F; + 2E.Cy).

Surprisingly, this was a novel mathematical solution!
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We can reproduce the published results of Madhusudhan (2012):
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CH, + H,0 = CO + 3H,,

€0, + H, = CO + H,0,
2CH, = C,H, + 3H,,

CHy = CoH, + Hy,

fi 2 AG
K ——Tico :(&) exp| - 2001 |
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] = < . o 2 &
im0 + fico + 2fico, = 2fo, Ko ——THON (&) exp _ AGos.
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mass conservation equilibrium constants (dimensionless)
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So does this fancy algebra produce accurate solutions?

P=1Dbar, ig=2.5x10"*, fig =5 x10"*, ity =10"* (C/0=0.5, NJO=0.2)

e

" thin curves: Heng & Lyons (2016)
solutions without nitrogen

circles: TEA Gibbs free =n CH,
energy minimization code i GH,
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When compared to full numerical solutions involving a Gibbs free energy
minimisation computer code, the differences are smaller than the widths
of the curves (at least, on a logarithmic plot).
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