ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS DAVID SUDARSKY, 1 ADAM BURROWS, 1 AND PHILIP PINTO 1 Received 1999 October 27; accepted 2000 March 13

This paper already predicted that hot Jupiters will be "dark" (~10% albedo in the visible)

13

Historical background & theory

14

(1728-1777)

Lambert's law of reflection"Lambertian sphere" model

Viktor V. Sobole

- Russian master of radiative transfer
- Influential 1975 textbook

Subrahmanyan Chandrasekhar

 Exact solution for isotropic scattering in semi-infinite atmosphere

Bruce Hapke (1931-present

- Hapke (1981): key approximation to Chandrasekhar's solution

15

Chandrasekhar's seminal contributions to radiative transfer theory

Subrahmanyan Chandrasekhar (1910-19:

Solution is expressed implicitly in terms of Chandrasekhar *H*-functions:

$$H(\mu) = 1 + \frac{1}{2}w\mu H(\mu) \int_0^1 \frac{H(\mu')}{\mu + \mu'} d\mu'$$

Requires numerical iteration!

Exists a literature on H-functions alone

16

OURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. B4, PAGES 3039-3054, APRIL 10, 1981

Bidirectional Reflectance Spectroscopy

1. Theory

BRUCE HAPKE

Department of Geology and Planetary Science, University of Patsburgh, Patsburgh, Pennsylvania 15200

truce Hapke (1931-present)

Hapke (1981) discovered an approximate, but highly accurate, closed-form solution to the Chandrasekhar H-function:

Single scattering in a semi-infinite atmosphere Lommel-Seeliger Law

One can *derive* this expression from the radiative transfer equation in the limit of a semi-infinite atmosphere